No matter how you view it, a space elevator is a stretch, not only of vision, but also of far-out materials and cutting-edge technology ... but that is not stopping the Institute for Scientific Research having a go.

Putting in place a space elevator is complicated: Extend a super-strong ribbon from an Earth-situated platform at the equator out beyond geosynchronous orbit. Once in position, electric lifts clamped to the ribbon would truck spacecraft, science gear, as well as passenger-carrying modules into space. But the quest for a revolutionary route to space is getting very real. So real, in truth, that the specter of a terrorist attack on such a stellar skyscraper can't be discounted. Nor can a host of thorny national and international legal and policy qualms be set aside for too long. Those were among numerous issues addressed during the 2nd Annual International Conference on the Space Elevator, held here September 12-15. The event was co-sponsored by the Los Alamos National Laboratory of Los Alamos, New Mexico and the Institute for Scientific Research, Inc., based in Fairmont, West Virginia. No longer merely theoretical, research and development dollars are actually being spent on fleshing out how best to build these sky high beasts of burden. The Institute for Scientific Research (ISR), a recently formed independent organization staffed with a cadre of multidisciplinary scientists, engineers, mathematicians, and other specialists, is currently shouldering most of the work on the space elevator project. A core ISR business area is in energy and space.

Preliminary studies of the space elevator suggest that it would be capable of lifting 5-ton payloads every day to all Earth orbits, the Moon, Mars, Venus or the asteroids. Furthermore, it could be operational in 15 years. Now projected to be on the order of a $6 billion investment, the first space elevator could quickly reduce lift costs to $100 per pound. That far outstrips today's pricey launch costs of roughly $10,000 to $40,000 per pound, depending upon destination and choice of rocket launch system. Better yet is the offering from follow-on and larger elevators, built-to-order by making use of the initial one. Lift ticket expenses drop ever more sharply, permitting large-scale use of space, be it for commercial, military, scientific purposes, or even the mass exodus of space settlers Full article over at Space.com